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SUMMARY

The present study aims to accelerate the convergence to incompressible Navier–Stokes solution. For the
sake of computational e�ciency, Newton linearization of equations is invoked on non-staggered grids to
shorten the sequence to the �nal solution of the non-linear di�erential system of equations. For the sake
of accuracy, the resulting convection–di�usion–reaction �nite-di�erence equation is solved line-by-line
using the proposed nodally exact one-dimensional scheme. The matrix size is reduced and, at the same
time, the CPU time is considerably saved due to the decrease of stencil points. The e�ectiveness of the
implemented Newton linearization is demonstrated through computational exercises. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of transport equations for momenta in �owing �uids encounters di�cul-
ties stemming from approximating multi-dimensional advective �ux terms, specifying out�ow
conditions at truncated boundary and linearizing convective terms in the non-linear momen-
tum equations. Since the way of linearization can signi�cantly a�ect the rate of convergence
towards the �nal solution, choice of an appropriate linearization method is an important topic
in the area of computational �uid dynamics [1].
The simplest and frequently used linearization strategy is to lag the non-linear coe�cients

shown in the momentum equations. To speed up the convergence, one can simply update the
non-linear coe�cient. This updating procedure continues until the �nal steady-state solution
to the non-linear equation is obtained. Newton linearization enjoys rapid convergence [2] and
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has been successfully applied to solve for non-linear equations for �uid dynamics and heat
transfer. In Newton’s method, equation Ax= b, where x is the state vector and A is a function
of x, is approximated by a �rst-order Taylor series to render J�x=R. Here, the component of
the Jacobian matrix (or the Fre’chlet derivative of R [3]) is de�ned by J(i; j)= −@R(i)=@x(j),
where R is known as the residual vector R= b−Ax. The matrix equation is then solved for
�xk from J�xk =Rk , followed by obtaining xk+1 = xk + �xk . This is done until the residual
norm falls below a user’s speci�ed tolerance, with J and R being computed each time using
the mostly updated solution x. Some practical issues of inverting the huge Jacobian matrix J
were discussed in [4].
Newton’s method is potentially attractive in accelerating convergence due to its ability to

o�er q-quadratic convergence [2]. The implementation of this method involves, however, time-
consuming manipulation of the Fre’chlet derivative of R at the current solution vector xk . This
disadvantage has been addressed previously by Hunt [5] in his three-dimensional viscous �ow
analysis. The Newton–Krylov method was proposed to avoid calculation and, thus, storage
of the Fre’chlet derivative [3]. The underlying principle of this method is to minimize the
residual in a Krylov space by linearizing the equation using the Newton method and solve
the resulting linear system of algebraic equations with a Krylov method. Both Arnoldi- and
Lanczos-based iterative matrix solution solvers can, thus, be applied [6]. Since the Jacobian
matrix is neither formed nor stored, the Newton–Krylov method can be speci�cally refereed
to as a matrix-free Newton–Krylov method [7]. An assessment study of several matrix-free
Newton–Krylov methods can be seen in the work of McHugh and Knoll [8]. For a further
minimization of residual, a multigrid preconditioner can be used together with the Newton–
Krylov linearization procedure [7].
Another major challenge in using Newton’s method, assuming the required memory is

available, is the increasing radius of convergence. The variable secant procedure, known
more generally as the Newton–Raphson method, was proposed to overcome this di�culty
by replacing the derivative with a secant line through two points. This potentially attractive
linearization method, however, requires factorization of tangent matrix at each iteration [9]. In
fact, the need to solve a large-scale system of linear equations at each iteration is considered as
a major shortcoming of the Newton-family methods. To reduce memory requirement and com-
putational cost when performing a classical Newton–Raphson linearization method, one can
introduce some iterative means to approximately solve the linear system of Newton lineariza-
tion equations. We refer to this class of methods as the inexact Newton methods [10–12]. In
the modi�ed Newton–Raphson method, the tangent matrix is factorized only once for a num-
ber of steps. This occasionally updating strategy may lead to poor convergence for a highly
non-linear system. As a means of partly circumventing this problem, the asymptotic Newton
method was proposed [9]. The Newton-relaxation method [13], with Newton being the pri-
mary iteration and relaxation the secondary iteration, is another useful method to avoid direct
solution of a large-scale linear system of three-dimensional equations, which must be solved
at each iteration of Newton’s method. In the light of the above literature survey, Newton’s
linearization procedure which is suited to be used together with the discretization scheme and
the solution algorithm is proposed.
The rest of this paper is organized as follows. In Section 2 the Newton linearization pro-

cedure, used together with the iterative solution algorithm, is detailed. This is followed by
proposing a discretization scheme mostly suited for solving the resulting linearized momentum
equations. Discretization of incompressible Navier–Stokes equations on non-staggered grids is
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derailed in Section 4. An assessment study on the present method and the simple iterative
update coe�cient method is given in Section 5. The last section provides the concluding
remarks.

2. LINEARIZATION OF NAVIER–STOKES EQUATIONS

We consider in the paper a two-dimensional steady-state �ow equations. Subject to the in-
compressible constraint condition, the transport equations for the viscous �uid �ow in � are
as follows:

ux + vy =0 (1)

uux + vuy =−px + �(uxx + uyy) (2)

uvx + vvy =−py + �(vxx + vyy) (3)

In this paper, the subscript denotes the partial derivative. Here, u=(u; v) and p are velocity
vector and pressure, respectively. Note that Equations (2) and (3) serve as the transport
equations for u and v, respectively. Working equation for p can be obtained as follows by
summing the @=@x (2) and @=@y (3) and employing (1):

pxx + pyy=−[(ux)2 + 2uyvx + (vy)2] (4)

Note that the inaccuracy stemming from approximation of terms shown in the right-hand side
of (4) for a given velocity �eld may limit the convergence rate, as discussed [14]. The above
pressure Poisson equation needs to be supplemented by the boundary condition given by

pn = [−(u · ∇)u+ �∇2u+ f] · n (5)

where n is the outward-directed unit vector normal to the boundary of �. In what follows the
dynamic viscosity of the �uid �ow is considered uniform for simplicity.
Linearization of convective terms on the left-hand sides of momentum equations (2) and

(3) starts from rewriting them as

(u2)x + (uv)y =−px + �(uxx + uyy) (6)

(uv)x + (v2)y =−py + �(vxx + vyy) (7)

Consider a function st, we can expand it in a Taylor series about the current value and
terminate the series expansion after the �rst-derivative terms. The result is as follows:

sk+1t k+1 = sk t k +
[
@
@s
(st)k

]
(sk+1 − sk) +

[
@
@t
(st)k

]
(t k+1 − t k) + H:O:T

= sk+1t k + sk t k+1 − sk t k +H:O:T (8)
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In the derivation that follows, all variables denoted by the superscript k are evaluated using
solutions obtained at the previous iteration counter. As for terms with the superscript k + 1,
they are evaluated at the most updated iteration and are, therefore, referred to as the active
quantities. According to Equation (8), we can linearize (u2)k+1x and (uv)k+1y as

(u2)k+1x = (uk+1uk + ukuk+1 − ukuk)x
= uk+1x uk + uk+1ukx + u

k
x u
k+1 + ukuk+1x − ukx uk − ukukx (9a)

(uv)k+1y = (uk+1vk + ukvk+1 − ukvk)y

= uk+1y vk + uk+1vky + u
k
yv
k+1 + ukvk+1y − ukyvk − ukvky (9b)

Substituting (9a) and (9b) into (6) led us to derive the linearized x-momentum equation as
follows:

ukuk+1x + vkuk+1y − �(uk+1xx + uk+1yy ) + u
k
x u
k+1

=− pk+1x + ukukx + v
kuky − ukyvk+1 (10)

Similarly, one can derive the following convection–di�usion–reaction (CDR) equation for v

ukvk+1x + vkvk+1y − �(vk+1xx + vk+1yy ) + v
k
yv
k+1

=− pk+1y + ukvkx + v
kvky − vkx uk+1 (11)

Neglect of the underlined terms from the Newton linearization Equations (10) and (11) results
in the conventional lagging coe�cient linearized equations.
For computational e�ciency, we can solve for Equation (10), for example, iteratively by

virtue of the following Alternating Direction Implicit (ADI) steps [15]:

ukuk+1x − �uk+1xx + ukx u
k+1 =−pk+1x + vkuk+1y − �uk+1yy + f1 (12a)

vkuk+1y − �uk+1yy + ukx u
k+1 =−pk+1x + ukuk+1x − �uk+1xx + f2 (12b)

where

f1 = ukukx + v
kuky − ukyvk+1 (13a)

f2 = ukukx + v
kuky − ukyvk+1 (13b)
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Note that when an ADI method is applied together with the pseudo-transient approach, where
pseudo-time derivative terms are added to the steady Navier–Stokes equations so as to be
able to parabolize the elliptic di�erential system for time marching, its strong convergence
property discussed in Reference [16] deteriorates considerably for cases involving complex ge-
ometries and high Reynolds numbers [17]. Under these circumstances, use of an ADI method
is constrained by a small time increment to maintain convergence solutions to steady-state.

3. NUMERICAL MODEL

As Equations (12a) and (12b) show, the prototype equation takes the following form:

u�x + v�y − k(�xx +�yy) + c�=f (14)

For simplicity, the model equation is solved subject to a speci�ed boundary value of �. In
the above, k and c denote the di�usion coe�cient and the reaction coe�cient, respectively.
In what follows u, v, k and c are assumed to have constant values.
By virtue of the operator splitting method of Peaceman and Rachford [15], solutions to

Equation (14) are sought from the predictor and corrector steps, respectively:

u�∗
x − k�∗

xx + c�
∗ =f1 (15a)

v�n+1y − k�n+1yy + c�n+1 =f2 (15b)

In the above, f1 =f∗ − v�ny − k�nyy and f2 =fn+1 − u�∗
x − k�∗

xx. As Equations (15a) and
(15b) reveal, a key concern in the analysis of the two-dimensional CDR equation (14) is the
discretization of the following one-dimensional equation:

u�x − k�xx + c�=f (15c)

For illustrative purposes, f is assumed to be a known constant.
Our strategy of approximating (15c) is to employ its general solution

�= c1e�1x + c2e�2x +
f
c

(16)

where (�1; �2)= (u+
√
u2 + 4ck=2k; u− √

u2 + 4ck=2k). In Equation (16), c1 and c2 are con-
stants. Terms other than the di�usive term shown in Equation (15c) are approximated by the
centre-like scheme. Therefore, the discrete equation at an interior node i can be expressed as

(
− u
2h

− m
h2
+
c
6

)
�i−1 + 2

( m
h2
+
c
3

)
�i +

( u
2h

− m
h2
+
c
6

)
�i+1 =f (17)

where h is the mesh size. We then substitute the exact solutions �i= c1e�1xi + c2e�2xi + f=c,
�i+1 = c1e�1he�1xi+c2e�2he�2xi+f=c, and �i−1 = c1e−�1he�1xi+c2e−�2he�2xi+f=c into Equation (17).
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The closed-form of m can be derived as [18]

m= h2
{
c=3 + c=6 cosh(�1) cosh(�2) + u=2h sinh(�1) cosh(�2)

cosh(�1) cosh(�2)− 1

}
(18)

where (�1; �2)= (uh=2k;
√
(uh=2k)2 + ch2=k). Note that the predicted inaccuracy stems solely

from the approximated f.

4. INCOMPRESSIBLE NAVIER–STOKES CALCULATION
ON NON-STAGGERED GRIDS

On physical grounds, −∇p in the equations of motion is discretized by a centred scheme.
However, centre approximation of @p=@x and @p=@y on non-staggered grids engenders spurious
even–odd oscillations [19, 20]. Therefore, one has to suppress these erroneous checkerboard-
ing pressures when simulating the incompressible �ow equations on grids of the simplest
form [21].
For overcoming di�culty with the even–odd decoupling, we calculate Fj(≡ h�x) and

Gj(≡ h2�xx) implicitly from

�0Fj+1 + �0Fj + �0Fj−1 = a0(�j+2 −�j+1) + b0(�j+1 −�j)

+ c0(�j −�j−1) + d0(�j−1 −�j−2) (19)

and

�1Gj+1 + �1Gj + �1Gj−1 = a1�j+2 + b1�j+1 + c1�j + d1�j−1 + e1�j−2 (20)

Provided that (�0; �0; �0; a0; b0; c0; d0)= (15 ;
3
5 ;
1
5 ;

1
60 ;

29
60 ;

29
60 ;

1
60 ) and (�1; �1; �1; a1; b1; c1; d1; e1)=

(1; 112 ; 1;
3
8 ; 6;− 51

4 ; 6;
3
8 ), both �x and �xx accommodate sixth-order accuracy.

The implicit equations for F and G at nodes immediately adjacent to the boundary can be
derived by specifying d0 = e1 = 0 and a0 = a1 = 0 at nodes next to the left and right boundaries,
respectively. By performing Taylor series expansion, the coe�cients can be analytically de-
rived as (�0; �0; �0; a0; b0; c0; d0)= ( 310 ;

3
5 ;

1
10 ;

1
30 ;

19
30 ;

1
3 ; 0) and (

1
10 ;

3
5 ;

3
10 ; 0;

1
3 ;
19
30 ;

1
30 ) at nodes next

to the left and right boundaries, respectively. In addition, coe�cients for evaluating Gj are
exactly derived as (�1; �1; �1; a1; b1; c1; d1; e1)= (1; 10; 1; 0; 12;−24; 12; 0).

5. NUMERICAL RESULTS

5.1. Non-linear advection–di�usion scalar equation

To verify the proposed Newton linearization method, the following two-dimensional non-linear
convection–di�usion equation for u is considered in 06x; y61:

uux + vuy − k(uxx + uyy)=f (21)
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Figure 1. Comparison of the convergence histories, with the initial guess value u=0:5, for solving the
non-linear advection–di�usion equation (21).

Figure 2. Plots of the ADI iteration number against the outer (non-linear) iteration number
for the two investigated linearization methods.

The validation test was performed at k= x2, v=y and f=2x3(y4 − x). The solution to
equation (21) was exactly derived as u= x2y2.
We assess our proposed model and then the standard relaxation method based on unew =

�unew + (1− �)uold, where 06�61. As Figure 1 shows, a considerable amount of non-linear
iterations has been saved in view of the iteration numbers needed for the results obtained
at �=0:2, 0.4, 0.6 and 0.8. The tolerance, de�ned as [1=N

∑
(unew − uold)2]1=2, set for each

calculation is 10−13. Here, N denotes the number of solution points. We also compare the
iteration numbers needed to reach the convergent ADI solution at each non-linear iteration.
It is seen from Figure 2 that much fewer ADI iterations are needed when using the present
Newton linearization method.
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5.2. Non-linear Navier–Stokes equations

For the sake of validation, a problem with f =0 is considered. The analytic pressure in the
unit square is

p=
−2

(1 + x)2 + (1 + y)2
(22)

provided that the boundary velocities are analytically speci�ed as

u=
−2(1 + y)

(1 + x)2 + (1 + y)2
(23a)

v=
2(1 + x)

(1 + x)2 + (1 + y)2
(23b)

In Figure 3, we plot the computed rates of convergence for u, v, and p according to

C=
ln ||err1|| − ln ||err2||
ln |h1| − ln |h2| (24)

The error measure is cast in the discrete L2-norm

E=

[
1
M

M1=2∑
i; j=1

(uij −Uij)2
]1=2

(25)

In the above equation, Uij denotes the exact solution at an interior nodal point (i; j) and uij
is the corresponding �nite-di�erence solution. As the computed rates of convergence show
in Figure 3, the validity of the method is justi�ed. Like the scalar problem, it is found that

Figure 3. The computed rates of convergence for u, v and p.
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Figure 4. Comparison of the convergent histories for solving the non-linear Navier–Stokes problem,
which has the analytic solutions given in (22)–(23b) at Re=1000. The initial guess solutions for u

and v are u= v=0:5: (a) convergence histories for u; and (b) convergence histories for v.

Figure 5. Plots of the ADI iteration number against the outer (non-linear) iteration number for the two
investigated linearization methods: (a) u; and (b) v.

a considerable amount of non-linear and ADI iterations can be saved, as seen in Figures 4
and 5.
The second problem to be investigated is known as the Kovasznay �ow problem [22],

which is amenable to the analytic solutions given below

u=1− e�x cos(2�y) (26a)

v=
�
2�
e�x sin(2�y) (26b)
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Figure 6. The computed rates of convergence for u, v and p.

Figure 7. Comparison of the convergent histories for solving the non-linear Navier–Stokes problem,
which has the analytic solutions given in (27) at Re=1000. The initial guess solutions for u and v are

u= v=0:5: (a) convergence histories for u; and (b) convergence histories for v.

p=
1
2
(1− e2�x) (26c)

where �=Re=2− (Re2=4 + 4�2)1=2. Numerical calculations have been carried out in a square
which is covered with uniform grids. For the test Reynolds number 1000, both pressure and
velocity �elds are well-predicted, as seen from the predicted errors shown in Figure 6. As the
error reduction plot shows in Figure 7, non-linear iteration numbers have been considerably
saved. The inner iteration number for each non-linear iteration is also largely reduced, as seen
in Figure 8. This clearly shows the advantage of using the Newton linearization method.
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Figure 8. Plots of the ADI iteration number against the outer (non-linear) iteration number for the two
investigated linearization methods: (a) u; and (b) v.

Figure 9. Comparison of the convergent histories for solving the non-linear Navier–Stokes problem,
which has the analytic solutions given in (28)–(30) at Re=1000. The initial guess solutions for u

and v are u=0:5: (a) convergence histories for u; and (b) convergence histories for v.

The validation and assessment are followed by considering another analytic lid-driven cavity
�ow problem [23]. In a square domain, the Navier–Stokes equations are solved subject to the
following boundary conditions for u and v at x=0, 1 and y=0, 1:

u=8(x4 − 2x3 + x2)(4y3 − 2y) (27a)

v=−8(4x3 − 6x2 + 2x)(y4 − y2) (27b)
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Figure 10. Plots of the ADI iteration number against the outer (non-linear) iteration number for the two
investigated linearization methods: (a) u; and (b) v.
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Figure 11. The computed rates of convergence for u, v and p.

Moreover, as the body force f =(f1; f2) is given as

f1 = 0 (28a)

f2 =
Re
8
[24J1(x) + 2I ′1(x)I

′′
2 (y) + I

′′′
1 (x)I2(y)] + 64[J3(x)J4(y)− I2(y)I ′2(y)J2(x)]

(28b)
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Figure 12. The computed solutions at Re=1000: (a) streamlines; (b) pressure contours; and (c)
mid-sectional velocity pro�les for u and v.

the pressure solution takes the following analytic form:

p=
8
Re
[J1(x)I ′′′2 (y) + I

′
1(x)I

′
2(y)] + 64J3(x)[I2(y)I

′′
2 (y)− (I ′2(y))2] (29)

where

I1(x) = x4 − 2x3 + x2

I2(y) = y4 − y2

J1(x) = 0:2x5 − 0:5x4 + 1
3x
3

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:297–312
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Figure 13. A comparison of the computed and Ghia’s velocity pro�les
for u(x; 0:5) and v(0:5; y) at Re=5000.

Figure 14. Comparison of the convergent histories for solving the lid-driven cavity �ow prob-
lem at Re=5000. The initial guess solutions for u and v are u= v=0:5: (a) convergence

histories for u; and (b) convergence histories for v.

J2(x) =−4x6 + 12x5 − 14x4 + 8x3 − 2x2

J3(x) = 0:5(x4 − 2x3 + x2)2

J4(y) =−24y5 + 8y3 − 4y

Considering the case with Re=1000, employment of the Newton linearization method
renders a much faster convergent solution. The evidences are given in Figures 9 and 10,
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Figure 15. Plots of the ADI iteration number against the outer (non-linear) iteration number for the two
investigated linearization methods: (a) u; and (b) v.

from which a considerable amount of CPU time is saved. The computed solutions given in
Figure 11 reveal that the proposed model o�ers good accuracy but not at the cost of de-
teriorated convergence. For completeness, the contour levels for streamline and pressure are
plotted in Figure 12, together with the mid-sectional velocity pro�les for u and v.

5.3. Lid-driven cavity �ow problem

The next Navier–Stokes problem considers the cavity �ow driven by a constant upper lid
velocity ulid. The geometrical simplicity and physical complexity have made this problem
an attractive test for benchmarking the incompressible Navier–Stokes models. With ‘ as the
characteristic length, ulid the characteristic velocity, the Reynolds number under investigation
is 5000.
We continuously re�ne the mesh and plot the grid independent mid-plane velocity pro�les

u(0:5; y) and v(x; 0:5) in Figure 13. For the sake of comparison, the steady-state benchmark
solutions obtained by Ghia [24] are also given in the same �gure. The agreement between the
two numerical solutions is extremely good. Most importantly, much improved convergence
histories are seen from Figures 14 and 15 and these con�rm the applicability of the proposed
scheme.

6. CONCLUDING REMARKS

The objective of this study is to show the e�ectiveness of using the Newton linearization
method to solve for the incompressible Navier–Stokes equations. Revealed from this study
is that the linearized equations can be e�ciently solved on non-staggered grids using the
computationally very accurate CDR scheme. Numerical study of several problems shows the
e�ectiveness of Newton’s method in o�ering much faster outer iteration (or non-linear itera-
tion) and inner iteration (ADI iteration) convergence to the convergent solutions is seen for
all test problems.
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